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We treat the problem of the stability of an infinite horizontal array of cylinders, 
spaced periodically, by a direct numerical simulation of the Navier-Stokes equations 
for steady flow a t  Reynolds numbers less than or equal to 100. We find that the only 
stable configuration for the array is one with equal spacing between cylinders and all 
cylinders lying on a line perpendicular to the flow. The array is found to be stable 
under displacements of the cylinders perpendicular and parallel to the array. We say 
a perturbation is stable when it gives rise to a force which acts to restore the original 
stable configuration. Our results are consistent with experiments in which spheres 
were confined by the sidewalls of a fluidized bed to move in two dimensions. As a 
secondary issue we consider the variation with parameters of the length and width 
of wakes behind cylinders. 

1. Introduction 
Experiments on fluidization with water of spherical particles falling against 

gravity in columns of rectangular cross-section are described in the recent papers by 
Fortes, Joseph & Lundgren (1987) and Joseph et al. (1987). All of these experiments 
are dominated by inertial effects associated with wakes. Two local mechanisms are 
involved : drafting, and kissing, and tumbling into stable cross-stream arrays. 
Drafting and kissing are the rearrangement mechanisms in which one sphere is 
captured in the wake of the other. A sphere in the wake of another sphere is 
accelerated by the pressure deficit until the two spheres kiss. The kissing spheres are 
aligned with the stream. The streamwise alignment is massively unstable and the 
kissing spheres tumble into *more stable cross-stream pairs or doublets which can 
aggregate into larger relatively stable horizontal arrays. The stability of cross-stream 
arrays in beds of spheres constrained to move in two  dimensions is amazing. A 
somewhat weaker form of cooperative motion of cross-stream arrays of rising spheres 
is found in beds of square cross-section where the spheres may move freely in three 
dimensions. 

Experiments using cylinders of different length-to-diameter ratios were also 
carried out. All objects float with their broad side perpendicular to the stream, 
broadside on, The broadside-on position of particles is due to a turning couple at the 
front of bodies which is of the same nature as the couple that turns canoes broadside 
on in a stream or cause an aircraft to stall, and an explanation can be given from 
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FIGURE 1 .  Stable cross-stream array of plastic spheres, D = 6.35 mm, R = 350. The flow is against 
gravity. The spheres are stationary except for sidewise rocking due to vortex shedding. 

potential flow. This explanation is formed in terms of the natural hydrodynamic 
couple produced at the stagnation points in the flow around a long body, which turns 
the body so that its broad side faces the stream (cf. Joseph et ah 1987, $5). Kissing 
spheres are a composite body equivalent to a long cylinder ; they tumble because of 
the turning couple on the composite body. Then they separate. The effect of drafting, 
kissing and tumbling is such as to bring the line of centres between two spheres into 
the cross-stream position, the other positions are basically unstable because they are 
prey to wake interactions and drafting. The effects of wakes behind spheres and of 
turning couples on long bodies lead to a kind of dynamical justification of one- 
dimensional mathematical treatments, e.g. Wallis (1969), which might at  first be 
thought to be merely convenient. 

The numerical simulation presented in this paper introduces a novel method of 
testing the stability of cross-stream arrays of spheres observed in beds of narrow gap 
in which the spheres are constrained to move in two dimensions ; see figures 1 and 2 
in this paper and figures 6, 9 and 15 in Fortes et al. (1987). The one-dimensional 
structure of a fluidized bed of spheres constrained to move in two dimensions 
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FIGURE 2. Flow visualization of a stable cross-stream array of plastic spheres using hydrogen 
bubbles, R = 305. 

is apparent in figure 3, in figures 11, 12 and 15 in Fortes et al., and in figure 15 of 
Joseph et al. (1987). 

The same mechanisms, drafting, kissing and tumbling, which lead to flow-induced 
anisotropy favouring cross-stream alignment in two-dimensional beds are also a t  
work in three dimensions. Drafting and kissing are local effects which are important 
whenever the velocity of the water relative to the spheres is large enough to produce 
a strong wake. Turning couples on long bodies, for example on kissing spheres, are 
also inertial effects independent of the presence of close-up walls. Thus there appears 
to be a dynamical basis for conjectures that express the idea that number density 
gradients are much larger in the vertical direction than in the transverse directions 
(see figure 7 in Fortes et al. 1987). However, the extended cross-stream alignments of 
single lines of spheres which are evident in two dimensions, do not seem to occur in 
three. Evidently single lines of particles which are not constrained to move in two 
dimensions are unstable. There is nonetheless a visible flow-induced anisotropy 
favouring cross-stream alignment in three-dimensional beds. Admittedly this is a 
conjecture based on casual observation needing verification which, if true, is true in 
to-be-determined limits. 

In this paper we confine our attention to the observed stability of the line of 
spheres which are constrained to move in two dimensions between parallel plates. 
The lines of particles shown in figures 1 and 2 were stable in the sense that they could 
be maintained for long times; in the best cases for hours. More typically these lines 
break up minutes after forming. We were not able to precisely assess the effects on 
the stability of the arrays of the unwanted eddying in the bed produced at  the 
distributor and perhaps of other causes. 

The numerical simulation in this paper is meant to  model our observations of 
stable cross-stream arrays of spheres. We do this in a strictly two-dimensional 
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FIGURE 3. A fully expanded two-dimensional bed of spheres. The one-dimensional nature of the 
particle density is apparefit. (a) Plastic spheres, R = 305. ( b )  Glass spheres, R = 1700. 

approximation of flow past an array of cylinders which are arranged with their lines 
of centres perpendicular to the stream. The array lives in R2 without boundaries. The 
flow is assumed to be laminar and is computed for Reynolds numbers up to 100. We 
use a time-dependent Navier-Stokes code following the method of Bristeau, 
Glowinski & Periaux (1987). We get steady solutions from this code when the 
Reynolds number is of the order 100 or less depending on the aspect ratio. In fact the 
flow is already unsteady a t  much smaller Reynolds numbers in an experimental 
situation. 

Our method for judging stability from a steady simulation is based on an 
examination of the forces on the cylinders. We think of the periodic array, evenly 
spaced, all in line, as our basic flow and we count a perturbation stable when the 
forces on the cylinders act to restore the basic flow. In  fact we do find such stability 
when the distance between cylinders is not too great, and the perturbation is not too 
large (see $6 for a full discussion). We see greater stability a t  higher Reynolds 
numbers. These results appear to be in good agreement with observations. In 
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reservation, we must note that the simulation is only a weak representation of the 
observed flow. Spheres are different to cylinders and the flow is not steady even at  
moderately low values of Reynolds number because of vortex shedding (see figure 2).  
Moreover the perturbations which are prescribed in the simulation, the aspect ratio 
and stagger ratio, are not prescribed in experiments and instead are determined by 
the motion. The Reynolds numbers (< 100) for which our simulations were done are 
smaller than the Reynolds number ( z 300) for our experiments. In  experiments the 
Reynolds number is determined by the requirement that the drag acting on the 
sphere balances its weight, and smaller Reynolds numbers could presumably be 
obtained by using lighter spheres. It is necessary to add that we are talking about 
different Reynolds numbers; our simulation is done for an array of cylinders, not 
spheres confined between two parallel plates. 

The problem of the stability of arrays of spheres in Stokes’ flow has been 
considered by Crowley (1971) and Goren (1983). A one-dimensional array of spheres 
in Stokes’ flow was shown to be unstable by Crowley. He accounted for the 
interparticle interactions by making a first-order correction to Stokes’ drag in terms 
of d l b ,  where d is the diameter of spheres and b is the interparticle spacing. This is 
consistent with the present calculations which show that an array of cylinders is 
stabilized nonlinearly. Crowley also did experiments which demonstrate that the 
viscous instability tends to cluster the spheres into groups of three. On the other 
hand, experiments a t  higher Reynolds number lead to strong wake effects between 
pairs of spheres. Goren (1983) studied the stability of a one-dimensional array of 
spheres translating in the proximity of a no-slip wall for Stokes’ flow. The only stable 
motion for the array is one where spheres move along the line of centres. When the 
array moves normal to the line of centres it is unstable. The degree of instability 
depends on the ratio hlb and the direction of motion, where h is the distance of the 
array from the no-slip wall and b is the interparticle distance. When spheres move 
towards the wall the degree of instability increases as the ratio hlb is increased, but 
the opposite is the case for the motion away from the wall. For the motion parallel 
to the wall the influence of the wall is different on different wavelengths. 

We also used our code to determine some features of the wakes behind the cylinder. 
We find that the length of the wake increases linearly with the Reynolds number, but 
the thickness of the wake is not monotonic and appears to reach a limiting value 
depending on the aspect ratio (see $6 for a discussion). 

2. Mathematical formulation 
The aspect ratio a is 

L 
D a = -  (1  < a < a), 

where D is the diameter of the cylinder and L the horizontal projection of the 
distance between the centres of neighbouring cylinders. The out-of-line stagger ratio 
/3 is 

displacement of the particles perpendicular to the array 
D (0 d /3 < m). B= 

We also define the in-line stagger ratio y as 

Y =  
in-line displacement of the alternate cylinders from the even spacing 

D 
(0 6 y d a-1). 
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We define a Reynolds number based on diameter, R = UD/v. We also define the drag 
coefficient C, and the lift or side-force coeficient C, as 

drag force per unit length lift force per unit length 
0 . 5 p V D  , c, = 0.5pVD c, = 

The flow past an array is characterized by R, the aspect ratio and the in-line and 

We shall assume that the fluid is incompressible and satisfies the Navier-Stokes 
out-of-line stagger ratios. As R increases, inertial effects become more important. 

equations : 
(1) 

au 
at 
--vAu+(u.V)u+Vp =f, V - u  = 0 in a, 

where 52 is all of the plane outside the cylinders. This problem is to be solved with 
given initial and boundary conditions. The flow past an array has three different 
types of boundaries, so we divide the boundary, r, into three parts 

r = r, u rN u r,, 
where 4 is the union of line segments parallel to the symmetry axis, rN is the part 
of boundary on which the no-traction condition is to  be applied, r, is the part of 
boundary on which the velocity is prescribed. 

We must solve ( 1 )  subject to initial conditions 

u(x ,  0) = u,(x), p ( x ,  0) = p,(x), (2) 

and boundary conditions 
a% - u = g ,  on 4, u - n = - - 0  on G, 
an 

au 
v--np=g, on r,. 
an 

(3) 

wherc g, is the traction vector on r,. 
We define the usual function spaces for the finite-element method : 

u = { U E H 1 ( S Z ) z ;  u = go on T o ;  u . n = O  on c}, 
V = ( V E H ' ( Q ) ~ ;  v = O  on 6; u - n = O  on 41. 

After multiplying (1) by the weighting functions v E V and integrating by parts we get 
following variational formulation for the steady-state case : 

Vu.Vvdx+ v-(u-V)udx-  pdivvdx = v.g,ds for all V E V ,  s, I Jrii ] (4) 

qdivudx = 0 for all QEL'(Q).  Jb 
The numerical solution of Navier-Stokes equations, even for flow a t  low Reynolds 

numbers is difficult to compute because of the nonlinear term (u.V)u and the 
incompressibility condition. These two problems are coupled in the Navier-Stokes 
equations. We shall decouple these two problems by using an operator splitting 
technique (see Bristeau et uZ.), which requires the solution of three problems in one 
time stcp. We outline the method for the semi-discretization of the problem in time 
(step At)  ; all equations are understood in the sense of distributions. First we initialize 
by prescribing 

U0 = u,, po = p,, 
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where u,, and p,, are assumed. For n = 1 , 2 , .  . . we obtain (un ,pn)  from (un-',pn-') in 
three fractional time steps 6 At, (1  - 26) At and 6 At. The intermediate time variables 

and u ~ + ~ - ~  are defined in the following steps. 

Un+o - un 
0 At 

- ~ V A U ~ + ~ + V Z ) ~ + ~  = &Aun-(u"-V)un,  div (unfe) = 0, Step 1 :  

where unf6 satisfies boundary conditions (3) on I'. 
Un+l--8- p+6' 

Step 2: - &AUn+l-6+(Un+l-9.~ ) ,,ntl-B = Y A  Un+8- Vpn+@, 
(1 - 28) At 

where 

Step 3:  

satisfies boundary conditions (3) on r. 

where un+l satisfies boundary conditions (3) on r. Next n. 
The above scheme has the following properties. (i) By using the operator splitting 

method we have been able to decouple nonlinearity and incompressibility in the 
Navier-Stokes equations. (ii) Step 1 and step 3 are Stokes-like problems. (iii) Step 2 
is a nonlinear problem, with no incompressibility condition attached. (iv) For the 
fully discretized problem with 5 = (1  -26) / (  1 -6) ,  g = 6 / (  1 - O), the matrices of the 
terms with time derivatives and diffusion terms are same a t  each time step. (v) For 
a linear model problem, one can show that if 6 = 1 - 1 / 4 2  = 0.29289, then the 
scheme is second-order accurate and unconditionally stable. The nonlinear problem 
is solved by the least-square conjugate gradient method and the Stokes-like problem 
is solved by a conjugate gradient method. These methods are described by Bristcau 
et al. 

The space is discretized using the pseudo P2-Pl elements. Let 7h denote the 
triangulation of 8. Each triangle is further subdivided into four triangles by joining 
the midpoints of each side. Let 7K be the set of four subtriangles of K E ~ ~ .  Then the 
pressure, p ,  is in the space 

Qh = { q h E L 2 ( S Z ) ;  q h I K E P i V K E 7 h )  

and the discrete velocity space, U,, is defined as 

uh = w h  n u, 
w h  = {wh E co(f2)2 ; wh 1 K' E Pi v K' E 7~ V K  E 7 h ) .  where 

The weighting functions are in the space 

V, = W, n V ,  
The set containing the basis functions for the space Qh is 

{q5&sep,, c Qh with q5Js') = ass,, 
where p,, denotes the set of all vertices in r,,. 

vertices. The set containing the basis function for the space Wh is 
Let Nh be the set of all nodes in rh, which includes the nodes at midside points and 

{el $I?, e2 $N)NEN, wh with = 

where el, e2 are orthonormal basis vectors in R2. 



560 P .  Singh, Ph. Caussignac, A .  Fortes, D .  D .  Joseph and T. Lundgren 

--- 0 0 0 

fY 
--- 0 qo 

--- 0 0 0 

FIGURE 4. The different configurations of the arrays of cylinders for which numerical simulations 
were made. (a )  In the stable configuration for the array the cylinders are all in a row but their 
spacing is not determined. ( b )  Alternate cylinders are displaced in the vertical direction, measured 
by the out-of-line stagger ratio B. ( c )  Alternate cylinders are displaced in the horizontal direction, 
measured by the in-line stagger ratio y (see text for the definition of y ) .  The configuration ( a )  is 
stable when the forces on the cylinders are as drawn in ( b )  and (c ) .  

3. Domain selection 
The problem is to  compute the flow past an array of cylinders. It is an infinite- 

domain problem, whereas for a numerical simulation the computational domain 
must be of a finite size. It is possible to approximate the conditions for large y by free- 
stream conditions, but no such approximation can be made for any x. This forces us 
to  look for some symmetry to  reduce the domain size in the x-direction. Along the 
y-direction, the flow is uniform at minus infinity, so the flow can be assumed to be 
approximately uniform far enough upstream. We cannot make the same assumption 
for the downstream boundary because of the vortices behind the cylinders; a less 
constrained downstream boundary condition should be used. The natural boundary 
conditions expressed by (3) are a natural choice for the downstream condition. The 
symmetric configurations which allow us to reduce the size of the computational 
domain and study the stability of the array are shown in figure 4. The lines of even 
geometric symmetry are also streamlines for a steady flow. The size of the 
computational domain in the horizontal direction can be limited to the region 
between the two lines of even symmetry, but this symmetry assumption lacks 
generality. Periodic conditions a t  the lateral boundaries may be sufficiently general. 
The special periodic condition with even symmetry eliminates the type of unsteady 
flows that we observe in our experiments at the Reynolds numbers for which the 
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(4 (b) (4 
FIGURE 5. Typical computational domains. The labels attached to the boundaries indicate the type 
of boundary condition imposed (see (3)). ( a )  Computational domain for the stable configuration. 
(6) Computational domain for the in-line staggered arrays. (c) Computational domain for the 
out-of-line staggered arrays. 

spheres could be fluidized. The computational domains for the different array 
configurations are shown in figure 5.  

The procedure used to fix the location of downstream and upstream boundaries is 
the standard ‘cut and try’. We say that the distance is satisfactory if results do not 
change significantly when boundaries are moved. For large Reynolds numbers the 
wake is very large, forcing the downstream boundary far downstream. The increased 
size of the computational domain rapidly makes the computation too expensive. This 
limited the range of Reynolds numbers that we could study. Methods of exponential 
stretching can possibly be used to handle this difficulty. 

4. Convergence tests 
We did convergence tests to make sure that the drag coefficient and the velocity 

field obtained with our numerical scheme are reliable. A typical meshed domain is 
shown in figure 6. For this fixed domain we increased the number of nodes by putting 
the additional nodes in the high-velocity-gradient areas and computed the drag 
coefficient acting on the two cylinders. The velocity field obtained is so close for the 
three cases considered that the difference cannot be noticed on the stream-function 
plots. The numerical convergence of the computed drag coefficient on the two 
cylinders is displayed in figure 7 for three different values of the Reynolds number. 

5. A single cylinder in an infinite domain 
The main purpose of this section is to check the accuracy of the results obtained 

using our code. I n  figure 8 we compare our calculation of the drag coefficient on a 
single cylinder in an array with a very large aspect ratio (a = 28) with calculations 
of the drag coefficient on a single cylinder in an unbounded domain by Fornberg 
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FIGURE 6. A typical mesh used for computation. Pressure elements are shown. The number of 
nodes is 2100. 

0.99 I I I I 

1000 1200 1400 1600 1800 2000 

Nodes 

FIGURE 7. For a fixed domain with a = 2.5, 
to  solve the same problem. Let, 

= 0.25 and y = 0, different numbers of nodes are used 

C,, (no. of nodes) - C,, (no. of nodes = 1200) 
C,, (no. of nodes = 1200) 

C,, (no. of nodes) = 

C,, and C,, are plotted as a function of the number of nodes for three different values of Reynolds 
number. The numerical convergence deteriorates with Reynolds number. 
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0 100 200 300 

FIGURE 8. The drag coefficient versus Reynolds number for an isolated cylinder. m, 
Experimental ; +, present study ; 0, Fornberg (1985) ; 0, Braza et al. (1986). 

(1985) and Braza, Chassaing & Ha Minh (1986) and with the known experimental 
values. The length and width of the wake closely matches the known results for flow 
past a single cylinder obtained by Fornberg. To make sure that the side boundaries 
are far enough away we tried different domains. At  R = 100, C, = 2.986 for 01 = 2.5, 
CD = 1.291 for a = 14 and C, = 1.240 for a = 28. From figure 8 and the results just 
mentioned we conclude that the computed drag coefficient is correct and it is 
converging towards the case of flow past a single cylinder, and the code is expected 
to give correct results for the flows past arrays. 

6. Results 
6.1. Stability of a horizontal array 

The array is stable for both in-line and out-of-line displacement of the cylinders from 
the basic stable configuration under certain conditions. 

6.1.1. Xtability of the array under out-of-line perturbation of the cylinders 

stagger ratio and Reynolds number : 
The drag force acting on a cylinder is a function of the aspect ratio, out-of-line 

c,, = C,(a,P,RY); y = 0 (i = L2L 

where C,, and C,, are the drag coefficient acting on the upper and lower cylinders 
respectively in the vertical direction as shown in figure 4(b). The diameter of the 
cylinders is taken to be one. 

For the array to be stable, the drag coefficient acting on the lower cylinder should 
be larger than the drag coefficient acting on the upper cylinder. To quantify this 
stabilizing effect, we define a non-dimensional stabilizing force 

where CD = +(CD, + CDl), and Fu = i(Fyz + E L , )  is the average drag force. 
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FIGURE 9. The streamlines for the flow past an array with a = 2.0 and p = 0.5. (a) R = 1 ,  
(6)  R = 25, (c) R = 50, (d) R = 100. 

Again, AC, is a function of the aspect ratio, the out-of-line stagger ratio and the 
Reynolds number. The streamlines for the flow are shown in figure 9 for different 
values of the Reynolds number. Table 1 shows the variation of CDt and ACD with the 
parameters. From this table we draw the following conclusions: ( a )  ACD decreases 
with an increase in a ;  ( b )  AC, is maximum for some value o f p ;  ( c )  AC, increases with 
R, for the range of Reynolds numbers studied. 

One can understand the stabilizing effect in terms of the position of the separation 
points. Let 6 be the angle of a point on the surface of the cylinder from the negative 
y-direction, the upstream direction. The flow separates a t  6 = BS. The separation 
angle 6, on a cylinder in the array is larger than 90" in all the cases we have 
considered. When the cylinders are staggered out-of-line, the positions of the 
separation points change relative to their positions in the stable configuration, 
moving forward (upstream) on the cylinders in the upper row and rearward 
(downstream) on the cylinders in the lower row. When the separation point on the 
upper cylinder moves forward towards 0 = 90" there is a decrease in the drag because 
the region of high shear stress becomes smaller. Similarly, when the separation point 
on the lower cylinder moves rearward away from 6' = 90" there is an increase in the 
drag because the region of high shear stress becomes larger. This produces stabilizing 
forces which appear to be responsible for the stability of the array. This movement 
in the location of the separation point also results in a larger wake behind the upper 
cylinder and a smaller wake behind the lower cylinder. Figure 10 shows that the 
pressure recovery is larger on the lower cylinder than on the upper cylinder because 
flow separates at a larger angle. The larger pressure recovery on the lower cylinder 
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Re, = 0.1 Re, = 1.0 Re, = 25.0 

a /3 C,, C,, lOOAC, C,, C,, lOOAC, C,, C,, lOOAC, 

1.5 0 
1.5 0.1 1500.6 1503.1 0.17 149.84 150.64 0.53 8.465 9.516 12.42 
1.5 0.25 1393.0 1393.2 0.01 138.40 140.17 1.27 7.487 9.19 22.75 
1.5 0.5 - 106.56 109.26 2.53 - - - 
1.5 1.5 - 33.16 33.15 -0.04 - - - 
2.0 0.25 507.9 508.3 0.08 50.87 51.27 0.8 3.371 3.781 12.16 
2.0 0.5 - - - 20.82 20.79 -0.14 - - - 

- - - 153.84 153.86 0.01 9.103 9.103 0 

- - 

- - 

Re, = 50.0 Re, = 100.0 

a /? C,, C,, lOOAC, C,, C,, lOOAC, 

1.5 0.1 6.086 7.136 17.25 4.764 5.651 18.62 
1.5 0.25 - - - 4.084 5.251 28.57 

1.5 0 6.638 6.621 -0.256 5.157 5.153 -0.08 

- - - - - 1.5 0.5 - 
1.5 1.5 - - - - - - 
2.0 0.25 2.409 2.862 18.8 1.866 2.267 21.49 

TABLE 1. The stabilizing force is tabulated for different Reynolds numbers and aspect ratios for 
different displacements from the stable configurations 

- - - - - 2.0 0.5 - 

FIGURE 10. Isobars for the array with a = 2.0, /3 = 0.25 and y = 0; R = 100. The dark solid lines 
are used to show the wake bubbles. Note that the flow separates a t  a point downstream of the point 
where the adverse pressure gradient starts. 
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FIGURE 11. The streamlines for the flow past in-line staggered arrays, a = 2.5, /? = 0. The 
stagnation points are shown. A point of separation is shown in (c). (a) R = 1 ,  y = 0.5. ( b )  R = 100, 
y = 0.5. (c) R = 1 ,  = 0.25. ( d )  R = 100, y = 0.25. 

reduces the pressure drag, which is dcstabilizing, but this destabilizing contribution 
is much smaller than the stabilizing contribution that comes from the skin-friction 
drag. As the Reynolds number is decreased the stabilizing force decreases (conclusion 
c above). In the limit of Stokes flow there will not be any stabilizing force, 
AC, = 0. 

6.1.2. Stability of the array under in-line perturbations of even spacing 

ratio and the Reynolds number: 
The side force acting on a cylinder is a function of the aspect ratio, in-line stagger 

ACL = CJa, p, R, y )  ; p = 0, 

where C, is the side force coefficient acting on the cylinders as shown in figure 4(c) .  
When the spacing between the particles is not uniform the period cell required for the 
computations is doubly connected. We considered two different in-line staggered 
configurations which are shown in figure 11. In-line staggering displaces the 
forward stagnation point towards the nearer cylinder on the left side (see figure 11). 
This fore-and-aft asymmetry creates a strong repulsion force between the cylinders, 
which is stronger when y is larger (figure 12). Moreover, the forward stagnation point 
creeps towards the symmetry position (0 = 0) as the Reynolds number increases, as 
can be seen from figure 11. In figure 12 we have plotted the lift coefficient, giving the 
side force. The lift coefficient arises as a viscous effect, is greatest a t  low Reynolds 
numbers and is greater for more staggered arrays with closely spaced cylinders a t  
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FIQTJRE 12. Lift-force coefficient as a function of Reynolds number on staggered configurations. 
n , a = 2 . 5 , P = O ,  y=O.5 ;  +, a = 2 . 5 , P = O ,  y=O.25. 

fixed small Reynolds numbers. The side force arises from viscosity as in lubrication 
theory where the side forces support the load. This viscous effect competes with an 
opposing inertial effect that is best understood as a Bernoulli suction. We may 
conclude that even spacing is the only possibility for stability. The property of 
reversibility of Stokes flow implies that the sign of the force should change with the 
sign of velocity. Hence Fz = 0 for Stokes flow. 

6.2. Variation in the length and width of the wake with the aspect ratio 
Let 0 = es be the separation angle. For a single cylinder in an infinite domain there 
is no separation for low Reynolds numbers. As R is increased past the critical value 
at which separation begins, the separation angle decreases monotonically from 180" 
to about 78". At R = 100, B z 117". This results in a huge wake behind the cylinder. 
The flow past an array is similar to flow in a converging-diverging channel. 
Separation is suppressed in the converging part of the channel if the channel is 
narrow enough. Hence the flow through an array of cylinders of small aspect ratio 
is not expected to separate for angles smaller than 90'. Therefore we expect that the 
wake behind a cylinder in an array will be smaller than the wake behind a single 
cylinder. 

The point of separation is determined by the curvature of the channel, the 
Reynolds number and the rate of change of area of the channel. As the interparticle 
distance is increased, the rate of change of area of the channel between the two 
cylinders decreases, whereas the radius of curvature of the channel wall remains 
fixed. Hence an increase of interparticle distance will decrease the angle at  which the 
flow separates. In the limit, this problem degenerates to the flow past a single 
cylinder, and flow can separate even at angles smaller than 90" for very large 
Reynolds numbers. This argument is supported by table 2, which gives the variation 
of the separation angle with aspect ratio for a fixed Reynolds number. Table 2 also 
shows the variation of the wake length and width with aspect ratio. For large values 
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a 0 wake width wake length 

2.5 126.5 0.55 2.82 
14.0 118.0 0.65 4.12 
28.0 117.0 0.69 5.20 

TABLE 2. The separation angle and the length and width of the wake are shown as a function 
ofa.  R = 100 

FIGURE 13. The wake bubble is shown for a basic flow configuration a = 2.5, /3 = 0. (a) R = 25, 
( b )  R = 50, (c) R = 100, ( d )  R = 200. 

of the aspect ratio the length and width of the wake matches known results for flow 
past a single cylinder obtained by Fornberg (1985). 

6.3. Variation in the length and width of the wake with Reynolds number 
The wakes behind an out-of-line staggered array of cylinders are shown in figure 9 for 
different Reynolds numbers. The wakes behind an evenly spaced in-line array are 
exhibited in figure 13. The separation angle is greater than 90". As the Reynolds 
number is increased from low values, first both the length and width start to grow 
since the separation point moves upstream. But after a certain value of the Reynolds 
number, which depends on the aspect ratio, the position of the separation-point 
reaches an asymptotic value increasingly independent of the Reynolds number (see 
figure 14). This puts an upper limit on the maximum value of the wake width and 
reduces the rate of change of wake length with Reynolds number. The wake length 
continues to grow linearly with Reynolds number but the rate of growth at large 
Reynolds numbers is smaller than that at low Reynolds numbers. Also, the rate of 
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FIQURE 14. The angle of separation versus Reynolds number for an array with 
aspect ratio 1.25. 
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FIGURE 15. a = 1.25. The wake length (+-) and width (----) are plotted as a function of - Reynolds number. 

growth of the wake length with Reynolds number is much smaller than in the case 
of a single cylinder in an infinite domain. These results are shown in figure 15. 

The wakes behind a periodic array of cylinders have some features in common with 
wakes studied by Milos & Acrivos (1987). They studied flow behind a periodic array 
of flat plates orthogonal to the flow with assigned velocity profiles between the plates 
which could be varied between uniform and fully developed flow. When they 
assigned a velocity profile near to the one that might be expected between cylinders 
with an aspect ratio a 6 3.5, they found that the recirculation region grew linearly 
and with R, for all R computed by them. For 4 < a < 5 growth occurred, but only 
up to some critical Reynolds number. The similarity between our problem and theirs 
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may be superficial since their assignment of velocity profiles at the entrance does not 
allow for the natural hydrodynamic development of streamwise variations of the 
velocity field between the plates. The flow through a periodic array of flat plates in 
which the uniform velocity is assigned far upstream and far downstream would be 
closer to the profile studied here. We would not expect a strong correspondence 
between the flat plate and cylinder problem at low Reynolds numbers, because the 
position of the point of separation on the cylinder changes with Reynolds number 
and this is important in determining the length and width of wakes. On the other 
hand, the position of the separation point on a cylinder asymptotes to a certain value 
independent of the Reynolds number a t  high Reynolds numbers. Hence the variation 
of length and width of wakes behind flat plates and cylinders might be expected to 
be closer a t  high than a t  low Reynolds numbers. 

7. Conclusions 
The following conclusions are drawn on the basis of numerical simulations. 
(i) The array is stable under both in-line and out-of-line small perturbations of the 

(ii) The array is stable even for large perturbations in the in-line stagger ratio. 
(iii) The stability of an array decreases with aspect ratio and increases with 

Reynolds number. 
(iv) For small perturbations, the stabilizing force increases with the increase in the 

magnitude of perturbations. 
(v) As Reynolds number is increased from low values the flow separates and the 

separation point moves upstream asymptotically towards a point that depends on 
the aspect ratio. This makes the wake grow a t  a faster rate. 

(vi) The stagnation point moves upstream with the increase in the aspect ratio. 
(vii) For large Reynolds numbers, the wake length increases linearly with 

(viii) The wake length and width increase with aspect ratio. 

cylinders from the stable-even-spaced configuration. 

Reynolds number. 
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